Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 532
Filter
1.
Rev. bras. med. esporte ; 30: e2023_0266, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1529914

ABSTRACT

ABSTRACT Introduction: In prolonged physical activities, water replacement and muscle glycogen content are limiting factors in marathon runners. Carbohydrate-loading (CHO) in the days prior to endurance competition is a commonly employed method to optimise muscle glycogen stores and optimise exercise performance. Since each gram of muscle glycogen binds ∼2.7-4 grams of water, water retention may occur during carbohydrate-loading diets. Objective: To evaluate differences between CHO loading strategies (Bergström and Sherman) on intracellular (ICW) and extracellular (ECW) water content. Methods: Twenty-three runners were randomly allocated to two interventions (Bergström and Sherman) in a crossover design. Participants underwent a baseline evaluation before 3 days of glycogen depletion followed by 3 days of carbohydrate loading with a washout of 30 days consisting of normal diet and training. Multifrequency bioimpedance (BIS) was used to assess ICW and ECW at Baseline, Post-depletion and Post-CHO to determine any differences between Bergström and Sherman protocols. Blood samples were also obtained to assess potassium levels. Associations between ICW and ECW and muscle glycogen were determined. Results: There were no differences in ICW or ECW content between the two interventions at any moment. There was an effect of time for ICW, with an increase from Post-depletion to Post-CHO without any difference between interventions. Plasma potassium decreased from Baseline to Post-depletion in both conditions. There was no difference in muscle glycogen content between interventions or moments. Conclusion: There were no differences in ICW and ECW content between the Bergström and Sherman interventions at any moment. Level of Evidence I; Tests of Previously Developed Diagnostic Criteria.


RESUMEN Introducción: En actividades físicas prolongadas, la reposición de agua y el glucógeno muscular son factores limitantes en los corredores de maratón. La carga de carbohidratos (CHO) en los días previos a la competencia de resistencia es un método empleado para optimizar las reservas de glucógeno muscular y el rendimiento del ejercicio. Cómo cada gramo de glucógeno muscular se une a ≈ 2,7 a 4 gramos de agua, puede producirse retención de agua durante las dietas ricas en carbohidratos. Objetivo: Evaluar las diferencias entre las estrategias de carga de carbohidratos (Bergström y Sherman) en el contenido de agua intracelular (AIC) o extracelular (AEC). Métodos: Veintitrés corredores fueron asignados aleatoriamente a dos intervenciones (Bergström y Sherman) en un diseño cruzado. Los participantes se sometieron a una evaluación inicial antes de los 3 días de agotamiento del glucógeno, seguido de 3 días de carga de carbohidratos con un tiempo de "washout" de 30 días que consistía en una dieta y entrenamiento normales. Se utilizó bioimpedancia multifrecuencia (BIS) para evaluar AIC y AEC al inicio, después del agotamiento y después de CHO para determinar cualquier diferencia entre las dos intervenciones. También se obtuvieron muestras de sangre para evaluar el potasio. Se determinaron asociaciones entre AIC, AEC y glucógeno muscular. Resultados: No hubo diferencias en el contenido de AIC o AEC entre las dos intervenciones en ningún momento. Hubo un efecto de tiempo para AIC, con un aumento desde Post-agotamiento hasta Post-CHO sin ninguna diferencia entre las intervenciones. El potasio plasmático disminuyó entre el inicio y el post-agotamiento en ambas condiciones. No hubo diferencia en el contenido de glucógeno muscular entre las intervenciones o momentos. Conclusión: No hubo diferencias en el contenido de AIC y AEC entre las dos intervenciones en ningún momento. Nivel de Evidencia I; Pruebas de Criterios Diagnóstico Desarrollados Previamente.


RESUMO Introdução: Em atividades físicas prolongadas a reposição hídrica e o conteúdo de glicogênio muscular são fatores limitantes em corredores de maratonas. O carregamento de carboidrato (CHO) nos dias anteriores à competição de resistência é um método comumente empregado para otimizar os estoques de glicogênio muscular e o desempenho no exercício. Uma vez que cada grama de glicogênio muscular liga-se a ≈2,7 a 4 gramas de água, a retenção hídrica pode ocorrer durante dietas de carregamento de carboidrato. Objetivo: Avaliar diferenças entre as estratégias de carregamento de carboidratos (Bergström e Sherman) no teor de água intracelular (AIC) ou água extracelular (AEC). Métodos: Vinte e três corredores foram alocados aleatoriamente para duas intervenções (Bergström e Sherman) num delineamento em "crossover". Os participantes foram submetidos a uma avaliação inicial antes dos 3 dias de depleção de glicogênio, seguidos por 3 dias de carga de carboidratos com tempo de "washout" de 30 dias consistindo em dieta e treinamento normais. Utilizou-se a bioimpedância multifrequencial (BIS) para avaliar AIC e AEC na Etapa Inicial, Pós-depleção e Pós-CHO para determinar quaisquer diferenças entre os protocolos de Bersgstrom e Sherman. Também foram obtidas coletas de sangue para avaliar o potássio. Foram determinadas associações entre AIC, AEC e glicogênio muscular. Resultados: Não houve diferenças no conteúdo de AIC ou AEC entre as duas intervenções em qualquer momento. Houve um efeito do tempo para AIC, com aumento da etapa Pós-depleção para Pós-CHO sem qualquer diferença entre as intervenções. O potássio plasmático diminuiu entre a Linha de base e Pós-depleção em ambas condições. Não houve diferença no conteúdo de glicogênio muscular entre intervenções ou momentos. Conclusão: Não houve diferenças no conteúdo de AIC e AEC entre as intervenções de Bergström e Sherman em qualquer momento. Nível de Evidência I; Testes de Critérios Diagnósticos Desenvolvidos Anteriormente.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 107-113, 2024.
Article in Chinese | WPRIM | ID: wpr-1005259

ABSTRACT

ObjectiveTo investigate the mechanism of Biejiajian Wan in the intervention of primary liver cancer based on long non-coding RNA SNHG5 (lncRNA SNHG5)/micro RNA-26a-5p (miRNA-26a-5p)/glycogen synthase kinase-3β (GSK-3β) signal axis. MethodDouble luciferase reporting assay was used to verify the targeted interaction between lncRNA SNHG5 and miRNA-26a-5p, miRNA-26a-5p, and GSK-3β in HepG2 cells. Nude-mouse transplanted tumor model of human HepG2 were established and randomly divided into model group, Biejiajian Wan low-dose group (0.5 g·kg-1), medium-dose group (1.0 g·kg-1), and high-dose group (2.0 g·kg-1), and sorafenib group (100 mg·kg-1), with 10 mice in each group. The mice were given intragastric administration of normal saline or drug for 28 days, and the tumor volume was measured at different time. Hematoxylin-eosin (HE) staining was used to observe the histological changes of tumors. The nucleic acid levels of lncRNA SNHG5, miRNA-26a-5p, GSK-3β, and β-catenin mPNA in tumor tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of GSK-3β and β-catenin in tumor tissue were detected by western blot. ResultCompared with the SNHG5-WT (wild type) + miRNA NC (negative control) group, the relative luciferase activities of the SNHG5-WT + miRNA-26a-5p mimic group were decreased (P<0.05). Compared with the GSK-3β-WT + miRNA NC group, the relative luciferase activity of the GSK-3β-WT + miRNA-26a-5p mimic group was decreased (P<0.05). Compared with the model group, the tumor volume of Biejiajian Wan low-dose, medium-dose, and high-dose groups was significantly decreased (P<0.05, P<0.01). Compared with the model group, the cells in the tumor tissue of nude mice in each dose group of Biejiajian Wan were sparsely arranged with necrocytosis, which showed concentration-dependent changes. Compared with the model group, the expression levels of lncRNA SNHG5, GSK-3β, and β-catenin were decreased (P<0.05, P<0.01), while the expression of miRNA-26a-5p was increased in each dose group of Biejiajian Wan (P<0.05, P<0.01). Compared with the model group, the protein expression levels of GSK-3β and β-catenin were decreased in each dose group of Biejiajian Wan (P<0.05, P<0.01). ConclusionBiejiajian Wan may affect the necrosis of liver cancer cells through lncRNA SNHG5/miRNA-26a-5p/GSK-3β signal axis and thus play an anti-tumor role. This research will provide more theoretical basis for the clinical application of Biejiajian Wan.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 10-17, 2024.
Article in Chinese | WPRIM | ID: wpr-1003761

ABSTRACT

ObjectiveTo observe the therapeutic effect of Qiwei Baizhusan(QWBZS) on diabetic encephalopathy(DE) rat model, and to explore the possible mechanism of QWBZS in the treatment of DE based on phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK-3β) signaling pathway. MethodForty-eight SPF male Wistar rats were randomly divided into blank group(8 rats) and high-fat diet group(40 rats). After 12 weeks of feeding, rats in the high-fat diet group were intraperitoneally injected with 35 mg·kg-1 of 1% streptozotocin(STZ) for 2 consecutive days to construct a DE model, and rats in the blank group were injected with the same amount of sodium citrate buffer. After successful modeling, according to blood glucose and body weight, model rats were randomly divided into model group, low, medium and high dose groups of QWBZS(3.15, 6.3, 12.6 g·kg-1), combined western medicine group(metformin+rosiglitazone, 0.21 g·kg-1), with 6 rats in each group. The administration group was given the corresponding dose of drug by gavage, and the blank group and the model group were given an equal volume of 0.9% sodium chloride solution by gavage, 1 time/day for 6 weeks. Morris water maze was used to detect the spatial memory ability of DE rats. Fasting insulin (FINS) level was detected by enzyme-linked immunosorbent assay(ELISA) and insulin resistance index(HOMA-IR) was calculated. Hematoxylin-eosin(HE) staining was used to observe the morphological changes of hippocampus in rats, ELISA was used to detect the indexes of oxidative stress in hippocampal tissues, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect mRNA expression levels of PI3K, Akt, nuclear transcription factor-κB(NF-κB), tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in hippocampus, and Western blot was used to detect the protein expression of PI3K, Akt, phosphorylated(p)-Akt, GSK-3β and p-GSK-3β in hippocampus of rats. ResultCompared with the blank group, FINS and HOMA-IR values of the model group were significantly increased(P<0.01), the path of finding the original position of the platform was significantly increased, and the escape latency was significantly prolonged(P<0.01), the morphology of neuronal cells in hippocampal tissues was disrupted, the levels of reactive oxygen species(ROS) and malondialdehyde(MDA) in hippocampus of rats were increased, and the activity of superoxide dismutase(SOD) was decreased(P<0.05, P<0.01), mRNA expression levels of PI3K and Akt were decreased(P<0.01), mRNA expression levels of NF-κB, TNF-α and IL-1β were increased(P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly decreased, and the protein expression of GSK-3β was significantly increased(P<0.01). Compared with the model group, the FINS and HOMA-IR values of the medium dose group of QWBZS and the combined western medicine group were significantly decreased(P<0.01), the path of finding the original position of the platform and the escape latency were significantly shortened(P<0.01), the hippocampal tissue structure of rats was gradually recovered, and the morphological damage of nerve cells was significantly improved, the contents of ROS and MDA in hippocampus of rats decreased and the level of SOD increased(P<0.01), the mRNA expression levels of PI3K and Akt were increased(P<0.01), and the mRNA expression levels of NF-κB, TNF-α and IL-1β were decreased (P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly increased(P<0.01), and the expression of GSK-3β was significantly decreased(P<0.01). ConclusionQWBZS can alleviate insulin resistance in DE rats, it may repair hippocampal neuronal damage and improve learning and cognitive ability of DE rats by activating PI3K/Akt/GSK-3β signaling pathway.

4.
Acta neurol. colomb ; 39(3)sept. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1533502

ABSTRACT

Introducción: La enfermedad de Pompe es una enfermedad genética multisistémica y rápidamente progresiva, que causa compromiso muscular (esquelético, cardíaco y liso), severa hipotonía y dificultad en la deglución. Debido a la naturaleza de la enfermedad, la calidad de vida de las personas que la padecen puede verse más afectada con respecto a la población general. Método: Se llevó a cabo un estudio descriptivo de corte transversal. Se diseñó un instrumento tipo encuesta con preguntas de caracterización sociodemográfica y referentes a la enfermedad. Para medir la calidad de vida se aplicó el Medical Outcomes Study 36-Item Short Form (SF-36) Questionnaire. Se hizo una comparación entre grupos, con nivel de significancia de 0,05. Resultados: Se obtuvieron encuestas de 27 pacientes de seis países. La edad media fue de 40,52 años, el 59 % fueron mujeres, el 51 % casados, el 63 % activos laboralmente, con edad media de diagnóstico de 30,3 años (SD = 15,557). La dimensión con menor media fue el rol físico (10,2; IC 95 % = 1,5-21,9), mientras que la de mayor media fue la salud mental (65,5; IC 95 % = 56,9-74,0). El 29,7 % (IC 95 % = 11,2-48,0) de los encuestados consideró sentirse en peores condiciones de salud que el año anterior. Discusión: Se evidencia una baja calidad de vida en pacientes con EP, en comparación con la población general, si se tienen en cuenta otros estudios que utilizan el mismo cuestionario. Conclusiones: Se evidencia una baja calidad de vida en los pacientes con enfermedad de Pompe participantes; las dimensiones asociadas con parámetros físicos fueron las de menores puntuaciones.


Introduction: Pompe disease is a rapidly progressive, multisystemic genetic disease that causes muscle involvement (skeletal, cardiac and smooth), severe hypotonia and difficulty in swallowing. Due to the nature of the disease, the quality of life may be more affected compared to the general population. Method: A descriptive cross-sectional study was carried out. A survey-type instrument was designed with questions of sociodemographic characterization and those referring to the disease. To measure Quality of Life, the Medical Outcomes Study 36-Item Short Form (SF-36) questionnaire was applied. A comparison was made between groups with a significance level of 0,05. Results: 27 surveys of patients from six countries were obtained. The mean age 40.52 years, women 59 %, married 51 %, 63 % active in employment, with a mean age of diagnosis of 30.3 years (SD = 15,557). The dimension with the lowest mean was the Physical Role (10.2; 95 % CI = 1.5 - 21.9), while the one with the highest mean was the Mental Health dimension (65.5; 95 % CI = 56.9 - 74.0). 29.7 % (95 % CI = 11.2 - 48.0) of those surveyed considered they felt in worse health conditions than the previous year. Discussion: Low quality of life is evidenced in patients with PD in comparison to the general population described in other studies using the same questionnaire. Conclusions: A low quality of life is evidenced in the study individuals where the dimensions related to the physical area were lower.

5.
Acta neurol. colomb ; 39(2)jun. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1533488

ABSTRACT

Introducción: La enfermedad de Pompe es un trastorno de origen genético causado por la deficiencia de la enzima alfa-glucosidasa ácida, que se caracteriza por el acumulo anormal de glucógeno en los músculos y otros tejidos, generando una debilidad muscular progresiva, la cual debe ser diagnosticada y tratada de forma oportuna, ya que de esto dependerá el pronóstico, la sobrevida y la funcionalidad de los pacientes con esta condición. Contenidos: El abordaje multidisciplinario incluye tanto una adecuada valoración y soporte nutricional como el inicio del tratamiento modificador de enfermedad a través de la terapia de reemplazo enzimático, que a su vez dependerá de la forma de presentación, la variante genética, el perfil inicial del paciente, las condiciones especiales que puedan existir y las metas propias para cada paciente. Para garantizar un manejo adecuado, se deben realizar estudios de seguimiento con parámetros objetivos, evaluar posibles eventos secundarios e instaurar su manejo en caso de presentarlos. Conclusiones: El pronóstico de esta enfermedad dependerá del inicio oportuno del tratamiento, la implementación de pautas nutricionales adecuadas y el establecimiento del seguimiento de los parámetros clínicos y paraclínicos para cada uno de los pacientes.


Introduction: Pompe disease is a disorder of genetic origin caused by the deficiency of the acid alpha-glucosidase enzyme, which is characterized by the abnormal accumulation of glycogen in the muscles and other tissues, generating progressive muscle weakness, which must be diagnosed and treated in a timely manner, since the prognosis, survival, and functionality of patients with this condition will depend on this. Contents: The multidisciplinary approach includes both an adequate evaluation and nutritional support as well as the initiation of disease-modifying treatment through enzyme replacement therapy, which in turn will depend on the form of presentation, the genetic variant, the initial profile of the patient, the special conditions that may exist and the specific goals for each patient. To guarantee adequate management, follow-up studies must be carried out with objective parameters, evaluate possible secondary events and establish their management in case of presenting them. Conclusions: The prognosis of this disease will depend on the timely initiation of treatment, the implementation of adequate nutritional guidelines and the establishment of monitoring of clinical and paraclinical parameters for each of the patients.

6.
Acta neurol. colomb ; 39(2)jun. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1533490

ABSTRACT

Introducción: Gracias a la nueva herramienta de tratamiento con la terapia de reemplazo enzimático en la enfermedad de Pompe, se ha reducido la mortalidad a corto plazo. Contenidos: Esta herramienta permite a los pacientes mantener la independencia funcional y la adaptación de las habilidades motrices para su participación en varios aspectos de la vida diaria. Conclusiones: El abordaje de estos pacientes debe ser multidisciplinario, para dar un manejo integral a la condición clínica de cada individuo, y procurar el tratamiento de los sistemas físicos y emocionales que se pueden ver alterados con el curso de la enfermedad: osteomuscular, cardiovascular y respiratorio, deglución, lenguaje, nutrición y psicológico, incluidos los cuidados paliativos y el manejo del dolor.


Introduction: Enzyme replacement therapy in Pompe disease reduces short-term mortality. Contents: This therapy allows patients to maintain functional independence and adaptation of motor skills for patient participation in various aspects of daily life. Conclusions: The approach with this patients should be multidisciplinary to provide comprehensive management of the clinical condition of each individual seeking treatment of the physical and emotional aspects that may be altered in the disease progression: musculoskeletal, cardiovascular, respiratory, swallowing, language, nutritional and psychological; also including palliative care and pain management.

7.
Braz. oral res. (Online) ; 37: e112, 2023. graf
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1520511

ABSTRACT

Abstract This study aimed to investigate whether GSK-3 inhibition (CHIR99021) effectively promoted mineralization by cementoblasts (OCCM-30). OCCM-30 cells were used and treated with different concentrations of CHIR99021 (2.5, 5, and 10 mM). Experiments included proliferation and viability, cellular metabolic activity, gene expression, and mineral nodule formation by Xylene Orange at the experimental time points. In general, CHIR99021 did not significantly affect OCCM-30 viability and cell metabolism (MTT assay) (p > 0.05), but increased OCCM-30 proliferation at 2.5 mM on days 2 and 4 (p < 0.05). Data analysis further showed that inhibition of GSK-3 resulted in increased transcript levels of Axin2 in OCCM-30 cells starting as early as 4 h, and regulated the expression of key bone markers including alkaline phosphatase (Alp), runt-related transcription factor 2 (Runx-2), osteocalcin (Ocn), and osterix (Osx). In addition, CHIR99021 led to an enhanced mineral nodule formation in vitro under both osteogenic and non-osteogenic conditions as early as 5 days after treatment. Altogether, the results of the current study suggest that inhibition of GSK-3 has the potential to promote cementoblast differentiation leading to increased mineral deposition in vitro.

8.
Braz. j. biol ; 83: e250179, 2023. graf
Article in English | LILACS, VETINDEX | ID: biblio-1339372

ABSTRACT

Abstract Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimer's disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


Resumo O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis ​​pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.


Subject(s)
Humans , Insulin Resistance , Diabetes Mellitus , Glycogen Synthase Kinase 3 , Glucose , Homeostasis
9.
Malaysian Journal of Nutrition ; : 103-113, 2023.
Article in English | WPRIM | ID: wpr-1005340

ABSTRACT

@#Introduction: For athletes, an excessive increase in blood urea nitrogen (BUN) after multiple endurance exercises indicates muscle glycogen depletion that induces a diminution in performance. Our study aimed to examine the efficacy of chocolate milk (CM) compared with carbohydrate-protein replacement drink (CHOPRO) in suppressing the increase in BUN level following multiple rowing exercises among national male rowing athletes aged 18–23 years. Methods: Seven male athletes from the Rowing National Training Centre, Pengalengan, West Java, participated in this single-blind, randomised crossover study. They received CM or CHOPRO during four hours of recovery between two endurance exercises. Before (pre) and after (post) multiple exercises, a venous blood sample was collected to measure the increase in BUN level. The effects of each beverage on BUN level were compared using an independent t-test. Results: The increase in pre-post BUN level was significantly lower for CM trial compared to CHOPRO trial (164.0±61.3 mmol/L vs 293.5±88.3 mmol/L, p=0.012). Conclusion: It was observed that CM reduced rate of increase in BUN level following multiple rowing exercises. Thus, CM can be useful for athletes during intense training regimen with multiple exercise sessions. Future studies should investigate the effect of CM in various types of sports, using convenient, non-invasive, and real-time measurement.

10.
Braz. j. biol ; 83: 1-5, 2023. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468930

ABSTRACT

Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimer’s disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.


Subject(s)
Humans , Diabetes Mellitus/enzymology , Fluoroquinolones/analysis , /analysis
11.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469146

ABSTRACT

Abstract Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimers disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


Resumo O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.

12.
Chinese Acupuncture & Moxibustion ; (12): 793-799, 2023.
Article in Chinese | WPRIM | ID: wpr-980797

ABSTRACT

OBJECTIVE@#To observe the effects of Yizhi Tiaoshen (benefiting mental health and regulating the spirit) acupuncture on learning and memory function, and the expression of phosphorylated tubulin-associated unit (tau) protein in the hippocampus of Alzheimer's disease (AD) model rats, and explore the effect mechanism of this therapy on AD.@*METHODS@#A blank group and a sham-operation group were randomly selected from 60 male SD rats, 10 rats in each one. AD models were established in the rest 40 rats by the intraperitoneal injection of D-galactose and okadaic acid in the CA1 region of the bilateral hippocampus. Thirty successfully-replicated model rats were randomly divided into a model group, a western medication group and an acupuncture group, 10 rats in each one. In the acupuncture group, acupuncture was applied to "Baihui" (GV 20), "Sishencong" (EX-HN 1), "Neiguan" (PC 6), "Shenmen" (HT 7), "Xuanzhong" (GB 39) and "Sanyinjiao" (SP 6); and the needles were retained for 10 min. Acupuncture was given once daily. One course of treatment was composed of 6 days, with the interval of 1 day; the completion of treatment included 4 courses. In the western medication group, donepezil hydrochloride solution (0.45 mg/kg) was administrated intragastrically, once daily; it took 7 days to accomplish one course of treatment and a completion of intervention was composed of 4 courses. Morris water maze (MWM) and novel object recognition test (NORT) were used to assess the learning and memory function of the rats. Using HE staining and Nissl staining, the morphological structure of the hippocampus was observed. With Western blot adopted, the protein expression of the tau, phosphorylated tau protein at Ser198 (p-tau Ser198), protein phosphatase 2A (PP2A) and glycogen synthase kinase-3β (GSK-3β) in the hippocampus was detected.@*RESULTS@#There were no statistical differences in all of the indexes between the sham-operation group and the blank group. Compared with the sham-operation group, in the model group, the MWM escape latency was prolonged (P<0.05), the crossing frequency and the quadrant stay time in original platform were shortened (P<0.05), and the NORT discrimination index (DI) was reduced (P<0.05); the hippocampal cell numbers were declined and the cells arranged irregularly, the hippocampal neuronal structure was abnormal and the numbers of Nissl bodies decreased; the protein expression of p-tau Ser198 and GSK-3βwas increased (P<0.05) and that of PP2A decreased (P<0.05). When compared with the model group, in the western medication group and the acupuncture group, the MWM escape latency was shortened (P<0.05), the crossing frequency and the quadrant stay time in original platform were increased (P<0.05), and DI got higher (P<0.05); the hippocampal cell numbers were elevated and the cells arranged regularly, the damage of hippocampal neuronal structure was attenuated and the numbers of Nissl bodies were increased; the protein expression of p-tau Ser198 and GSK-3β was reduced (P<0.05) and that of PP2A was increased (P<0.05). There were no statistically significant differences in the above indexes between the acupuncture group and the western medication group (P>0.05).@*CONCLUSION@#Acupuncture therapy of "benefiting mental health and regulating the spirit" could improve the learning and memory function and alleviate neuronal injure of AD model rats. The effect mechanism of this therapy may be related to the down-regulation of GSK-3β and the up-regulation of PP2A in the hippocampus, and then to inducing the inhibition of tau protein phosphorylation.


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , Glycogen Synthase Kinase 3 beta , Tubulin , Alzheimer Disease/therapy , tau Proteins/genetics , Acupuncture Therapy , Hippocampus
13.
Acta Pharmaceutica Sinica ; (12): 1383-1394, 2023.
Article in Chinese | WPRIM | ID: wpr-978679

ABSTRACT

Glycogen synthase kinase 3/SHAGGY-like kinase (GSK3) proteins play important roles in regulating plant growth, development, and stress response. In order to reveal the characteristics of GSK family members in the medicinal plant Senna tora L., in this study, we conducted the identification and expression analyses of GSKs in S. tora based on its whole genome data, combined with bioinformatics and gene expression research methods. The results showed that a total of nine S. tora GSK genes were identified, all of which contained the GSK characteristic kinase domains. All members were distributed on six chromosomes, the encoding amino acid length ranged from 465 to 943 aa, the protein molecular weight was from 33.57 to 88.83 kDa, and the average isoelectric point was 8.2. The StoSKs were divided into four evolutionary branches, and the StoSKs in the same evolutionary branch shared the same exon/intron structure and conserved motifs. The expansion of the StoSKs gene family was mainly due to segment duplication events, and there were 17, 11, 8 and 7 pairs of collinear genes with Glycine max, Medicago truncatula, Arabidopsis thaliana and Oryza sativa, respectively. The promoter regions of StoSKs mostly contained responses elements related to stress stimulation, growth and development, and hormone induction. Transcriptome data analysis showed that StoSKs were expressed in different tissues, with the highest expression level in roots. Quantitative real-time PCR (qRT-PCR) analysis indicated that StoSKs in different evolutionary branches displayed a synergistic expression pattern response to light, and most of StoSKs could rapidly respond to NaCl stress with significantly up-regulated expression. All the results provide a basis for further analysis of the biological functions of the GSKs gene family in S. tora.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 162-169, 2023.
Article in Chinese | WPRIM | ID: wpr-978462

ABSTRACT

ObjectiveTo observe the effects of modified Shenqiwan on renal function and fibrosis in diabetic nephropathy mice and explore the underlying mechanism based on the glycogen synthase kinase-3β (GSK-3β)/cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signaling pathway. MethodFifty male db/db mice and 10 db/m mice were used in this study. The fifty db/db mice were randomly divided into model group, irbesartan group, and low-, medium-, and high-dose modified Shenqiwan groups. The 10 db/m mice were assigned to the normal group. The mice in the low-, medium-, and high-dose modified Shenqiwan groups were administered with modified Shenqiwan in the dosage form of suspension of Chinese medicinal granules by gavage, those in the irbesartan group were given irbesartan suspension by gavage, and those in the normal and model groups were given distilled water of equal volume by gavage. The intervention lasted for 12 weeks. The blood glucose levels, urine albumin-to-creatinine ratio (UACR), and the protein expression levels of GSK-3β, CREB, transforming growth factor-β1 (TGF-β1), E-cadherin, Vimentin, fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), and Collagen type Ⅳ (Coll Ⅳ) in the mouse kidneys were recorded before and after treatment. The extent of renal pathological damage was also observed. ResultCompared with the normal group, the model group showed significant increases in blood glucose levels, UACR levels, and the protein expression levels of GSK-3β, TGF-β1, E-cadherin, Vimentin, FN, PAI-1, and Coll Ⅳ in the kidneys (P<0.05), decreased protein expression level of CREB (P<0.05), and severe renal pathological damage. Compared with the model group, the low-, medium-, and high-dose modified Shenqiwan groups and the irbesartan group showed varying degrees of decreases in blood glucose levels, UACR levels, and the protein expression levels of GSK-3β, TGF-β1, E-cadherin, Vimentin, FN, PAI-1, and Coll Ⅳ in the kidneys (P<0.05), increased expression level of CREB protein (P<0.05), and improved renal pathological damage. ConclusionModified Shenqiwan can effectively reduce blood glucose levels, improve renal function, and alleviate fibrosis, and the mechanism of action is related to the inhibition of the GSK-3β/CREB signaling pathway.

15.
Chinese Journal of Hepatology ; (12): 428-432, 2023.
Article in Chinese | WPRIM | ID: wpr-986147

ABSTRACT

Objective: Glycogen storage disease type IX (GSD-IX) is a rare primary glucose metabolism abnormality caused by phosphorylase kinase deficiency and a series of pathogenic gene mutations. The clinical characteristics, gene analysis, and functional verification of a mutation in a child with hepatomegaly are summarized here to clarify the pathogenic cause of the disease. Methods: The clinical data of a child with GSD-IX was collected. Peripheral blood from the child and his parents was collected for genomic DNA extraction. The patient's gene diagnosis was performed by second-generation sequencing. The suspected mutations were verified by Sanger sequencing and bioinformatics analysis. The suspected splicing mutations were verified in vivo by RT-PCR and first-generation sequencing. Results: Hepatomegaly, transaminitis, and hypertriglyceridemia were present in children. Liver biopsy pathological examination results indicated glycogen storage disease. Gene sequencing revealed that the child had a c.285 + 2_285 + 5delTAGG hemizygous mutation in the PHKA2 gene. Sanger sequencing verification showed that the mother of the child was heterozygous and the father of the child was of the wild type. Software such as HSF3.1 and ESEfinder predicted that the gene mutation affected splicing. RT-PCR of peripheral blood from children and his mother confirmed that the mutation had caused the skipping of exon 3 during the constitutive splicing of the PHKA2 gene. Conclusion: The hemizygous mutation in the PHKA2 gene (c.285 + 2_285 + 5delTAGG) is the pathogenic cause of the patient's disease. The detection of the novel mutation site enriches the mutation spectrum of the PHKA2 gene and serves as a basis for the family's genetic counseling.


Subject(s)
Child , Humans , Male , Female , Exons , Glycogen Storage Disease/genetics , Hepatomegaly/genetics , Mutation , Phosphorylase Kinase/genetics
16.
Journal of Preventive Medicine ; (12): 271-274, 2023.
Article in Chinese | WPRIM | ID: wpr-965497

ABSTRACT

Objective @#To investigate the effect of aluminum exposure on expression of miR-497-5p, wingless murine breast cancer virus integration site family member 3a (Wnt3a), β-catenin protein, glycogen synthase kinase-3β (GSK-3β) protein and tau protein in rat adrenal pheochromocytoma PC12 cells, so as to provide insight into unraveling the mechanisms underlying aluminum exposure-induced abnormal phosphorylation of tau protein.@* Methods@# PC12 cells were exposed to Al(mal)3 at concentrations of 0, 100, 200, 400 μmol/L for 24 h. The viability of PC12 cells was measured using cell counting kit-8 (CCK-8) assay. The relative expression of miR-497-5p and Wnt3a was detected using a real-time fluorescent quantitative PCR (RT-qPCR) assay, and the expression of Wnt3a, β-catenin, GSK-3β, P-GSK-3β (Ser9), tau and p-tau (Ser396) proteins were determined using Western blotting. @*Results @#The viability of PC12 cells appeared a tendency towards a decline with the increase of aluminum dose (Ftrend=323.473, P=0.001). RT-qPCR assay detected that the relative miR-497-5p expression appeared a tendency towards a rise with the increase of aluminum dose (Ftrend=14.888, P=0.031), and the relative Wnt3a expression appeared a tendency towards a decline with the increase of aluminum dose (Ftrend=165.934, P<0.001). The miR-497-5p expression negatively correlated with the relative Wnt3a expression (r=-0.693, P=0.012). The expression of Wnt3a (Ftrend=357.656, P=0.001), β-catenin (Ftrend=208.750, P=0.001) and p-GSK-3β (Ser9) proteins (Ftrend=512.583, P<0.001) appeared a tendency towards a decline with the increase of aluminum dose, and the expression of GSK-3β (Ftrend=39.965, P<0.001), tau (Ftrend=277.929, P=0.006) and p-tau (Ser396) proteins (Ftrend=96.247, P=0.002) appeared a tendency towards a rise with the increase of aluminum dose. @*Conclusion@# Up-regulation of miR-497-5p and GSK-3β expression and down-regulation of Wnt3a and β-catenin expression may be a mechanism underlying aluminum exposure-induced abnormal phosphorylation of tau protein.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 63-70, 2023.
Article in Chinese | WPRIM | ID: wpr-961684

ABSTRACT

ObjectiveTo investigate the effect of Danzhi Xiaoyaosan on the phosphorylation of tau protein and different sites of glycogen synthase kinase-3β (GSK-3β) and phosphoseryl/suanyl phosphate protein phosphatase 2A (PP2A) in the hippocampus of rats with Alzheimer's disease (AD) and its mechanism. MethodThe rat model of AD was established by injecting okadaic acid into the bilateral hippocampus of 90 male Wistar rats in SPF grades. The rats with successful modeling were selected and randomly divided into model group, aricept group (0.5 mg·kg-1), and Danzhi Xiaoyaosan high, medium, and low groups (17.55, 8.77, and 4.38 g·kg-1), and then gavaged for 42 d, once a day. Morris water maze was used to detect the learning and memory ability of rats, Nissl's staining was used to observe the morphological structure of neurons in the hippocampus, and Real-time polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression levels of tau protein, GSK-3β, and PP2A. Western blot was used to determine the protein expression levels of tau protein, GSK-3β, and PP2A. ResultAs compared with the control group, the learning and memory abilities of the rats in the model group were significantly decreased (P<0.01), and the hippocampal CA3 region cells had abnormal structure, disorderly arrangement, and decreased number. The expression levels of GSK-3β mRNA, GSK-3β, p-GSK-3β-Tyr216, p-PP2A, and p-tau were increased in the model group as compared with the control group (P<0.01), and those of p-GSK-3β-Ser9 and PP2A decreased significantly (P<0.01). As compared with the model group, the learning and memory ability of the Aricept group and the Danzhi Xiaoyaosan groups were improved (P<0.05, P<0.01), and the cell morphology and the number of hippocampal CA3 regions were better. The mRNA expression levels of PP2A and tau in the Aricept group were significantly up-regulated (P<0.05), the mRNA expression level of GSK-3β was significantly down-regulated (P<0.01), and the protein expression levels of GSK-3β, p-GSK-3β-Tyr216, and p-PP2A were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of PP2A in the high-dose Danzhi Xiaoyaosan group was significantly up-regulated (P<0.01), and that of GSK-3β was significantly down-regulated (P<0.01), whereas the protein expression levels of p-PP2A, p-GSK-3β-Tyr216, and p-tau were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of GSK-3β was significantly down-regulated in the medium-dose Danzhi Xiaoyaosan group (P<0.01), the protein expression levels of GSK-3β, p-GSK-3β-Tyr216, and p-tau were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of PP2A was significantly up-regulated in the low-dose Danzhi Xiaoyaosan group (P<0.01), and that of GSK-3β was significantly down-regulated (P<0.01), whereas the protein expression levels of GSK-3β and p-GSK-3β-Tyr216 were down-regulated (P<0.05, P<0.01), and those of p-GSK-3β-Ser9 and PP2A were significantly up-regulated (P<0.01). ConclusionDanzhi Xiaoyaosan can improve the learning and memory ability of rats with AD, and its mechanism may be related to the regulation of the activities of GSK-3β and PP2A protein-related sites and the phosphorylation of tau protein.

18.
Chinese journal of integrative medicine ; (12): 405-412, 2023.
Article in English | WPRIM | ID: wpr-982291

ABSTRACT

OBJECTIVE@#To investigate the role of hippocampal neurodevelopment in the antidepressant effect of baicalin.@*METHODS@#Forty male Institute of Cancer Research mice were divided into control, corticosterone (CORT, 40 mg/kg), CORT+baicalin-L (25 mg/kg), CORT+baicalin-H (50 mg/kg), and CORT+fluoxetine (10 mg/kg) groups according to a random number table. An animal model of depression was established by chronic CORT exposure. Behavioral tests were used to assess the reliability of depression model and the antidepressant effect of baicalin. In addition, Nissl staining and immunofluorescence were used to evaluate the effect of baicalin on hippocampal neurodevelopment in mice. The protein and mRNA expression levels of neurodevelopment-related factors were detected by Western blot analysis and real-time polymerase chain reaction, respectively.@*RESULTS@#Baicalin significantly ameliorated the depressive-like behavior of mice resulting from CORT exposure and promoted the development of dentate gyrus in hippocampus, thereby reversing the depressive-like pathological changes in hippocampal neurons caused by CORT neurotoxicity. Moreover, baicalin significantly decreased the protein and mRNA expression levels of glycogen synthase kinase 3β (GSK3β), and upregulated the expression levels of cell cycle protein D1, p-mammalian target of rapamycin (mTOR), doublecortin, and brain-derived neurotrophic factor (all P<0.01). There were no significant differences between baicalin and fluoxetine groups (P>0.05).@*CONCLUSION@#Baicalin can promote the development of hippocampal neurons via mTOR/GSK3β signaling pathway, thus protect mice against CORT-induced neurotoxicity and play an antidepressant role.


Subject(s)
Male , Animals , Mice , Corticosterone , Fluoxetine/metabolism , Depression/chemically induced , Glycogen Synthase Kinase 3 beta/metabolism , Reproducibility of Results , Antidepressive Agents/pharmacology , Hippocampus , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , Behavior, Animal , Disease Models, Animal , Mammals/metabolism
19.
Journal of Zhejiang University. Medical sciences ; (6): 230-236, 2023.
Article in English | WPRIM | ID: wpr-982039

ABSTRACT

A 24-year-old male was admitted due to recurrent redness, swelling, fever and pain in the ankle, frequently accompanied by hungry feeling. Dual energy CT scans showed multiple small gouty stones in the posterior edge of the bilateral calcaneus and in the space between the bilateral metatarsophalangeal joints. The laboratory examination results indicated hyperlipidemia, high lactate lipids, and low fasting blood glucose. Histopathology of liver biopsy showed significant glycogen accumulation. The results of gene sequencing revealed the compound heterozygous mutations of the G6PC gene c.248G>A (p.Arg83His) and c.238T>A (p.Phe80Ile) in the proband. The c.248G>A mutation was from mother and the c.238T>A mutation was from father. The diagnosis of glycogen storage disease type Ⅰa was confirmed. After giving a high starch diet and limiting monosaccharide intake, as well as receiving uric acid and blood lipids lowering therapy, the condition of the patient was gradually stabilized. After a one-year follow-up, there were no acute episodes of gout and a significant improvement in hungry feeling in the patient.


Subject(s)
Male , Humans , Young Adult , Adult , Glycogen Storage Disease Type I/genetics , Gout/genetics , Mutation , Lipids
20.
Chinese Journal of Contemporary Pediatrics ; (12): 420-424, 2023.
Article in Chinese | WPRIM | ID: wpr-981973

ABSTRACT

Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease.


Subject(s)
Humans , Glycogen Storage Disease Type II/drug therapy , alpha-Glucosidases , Quality of Life , Enzyme Replacement Therapy
SELECTION OF CITATIONS
SEARCH DETAIL